
Exploiting Flexibly Assignable Work
to Improve Load Balance∗

Ali Pınar†
NERSC

Lawrence Berkeley National Laboratory
Berkeley, CA 94720
apinar@lbl.gov

Bruce Hendrickson
Parallel Computing Sciences Department

Sandia National Laboratories
Albuquerque, NM 87185–1110

bah@cs.sandia.gov

ABSTRACT
In many applications of parallel computing, distribution of
the data unambiguously implies distribution of work among
processors. But there are exceptions where some tasks can
be assigned to one of several processors without altering the
total volume of communication. In this paper, we study the
problem of exploiting this flexibility in assignment of tasks to
improve load balance. We first model the problem in terms
of network flow and use combinatorial techniques for its
solution. Our parametric search algorithms use maximum
flow algorithms for probing on a candidate optimal solution
value. We describe two algorithms to solve the assignment
problem with log WT and |P | probe calls, where WT and |P |,
respectively, denote the total workload and number of pro-
cessors. We also define augmenting paths and cuts for this
problem, and show that any algorithm based on augmenting
paths can be used to find an optimal solution for the task
assignment problem. We then consider a continuous version
of the problem, and formulate it as a linearly constrained
optimization problem, i.e., min ‖Ax‖∞, s.t. Bx = d. To
avoid solving an intractable ∞-norm optimization problem,
we show that in this case minimizing the 2-norm is sufficient
to minimize the ∞-norm, which reduces the problem to the
well-studied linearly-constrained least squares problem. The
continuous version of the problem has the advantage of be-
ing easily amenable to parallelization.

†The author is also supported by the Director, Office of
Science, Division of Mathematical, Information, and Com-
putational Sciences of the U.S. Department of Energy under
contract DE-AC03-76SF00098.
∗This work was funded by the Applied Mathematical Sci-
ences program, U.S. Department of Energy, Office of Energy
Research and performed at Sandia, a multiprogram labora-
tory operated by Sandia Corporation, a Lockheed-Martin
Company, for the U.S. DOE under contract number DE-
AC-94AL85000.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’02, August 10-13, 2002, Winnipeg,Manitoba, Canada.
Copyright 2002 ACM 1-58113-529-7/02/0008 ...$5.00.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems; G.2.2 [Discrete
Mathematics]: Graph Theory; G.2.3 [Discrete Math-
ematics]: Applications; J.2 [Computer Applications]:
Physical Sciences and Engineering

General Terms
Algorithms

Keywords
Parallel computing, load balancing, algorithms, maximum-
flow, least squares

1. INTRODUCTION
In many applications of parallel computing, the distribu-

tion of data among processors implies a corresponding dis-
tribution of work. However, there are important exceptions
to this rule that arise for one of two reasons. First, some por-
tions of the data may be replicated on multiple processors,
any of which could perform the associated work. Second,
tasks may involve multiple data items which may not all re-
side on the same processor. Thus, all the interacting data
will need to be combined on a single processor before the
computation can be completed. In principle, any processor
could perform this task (see, e.g. [9]), but for the purposes
of this paper we will consider only those processors owning
a portion of the relevant data–other options would increase
the communication requirements.

Examples of such flexibly assignable work are common in
scientific applications. In molecular dynamics simulations,
a force is computed between any pair of particles that are
close to each other. For large problems, these calculations
are usually parallelized by dividing the particles among the
processors [13]. If two close-by particles reside on different
processors, then either processor could perform the compu-
tation. Kalé et al. [9] worked on heuristics to improve load
balance by cleverly assigning such pairs in their molecular
dynamics code, NAMD [10].

Another example arises in finite element simulations. These
calculations consist of several computational phases, some of
which are element based while others are node based. If, for
instance, the mesh is partitioned so that processors own full
elements, then nodes at the boundary between elements will
be duplicated on at least two processors. Any of these pro-

cessors could perform the node based operations for these
shared nodes. If instead the mesh is partitioned by nodes,
then some elements will be divided among multiple proces-
sors. Any of these processors could be employed to perform
the element computation.

A third example comes from an important class of precon-
ditioners known as overlapped Schwarz domain decomposi-
tion [12, 15]. In this preconditioning scheme, processors per-
form one calculation on subdomains that overlap each other,
and another calculation on disjoint subdomains. With the
overlapped domains, some portions of the data are dupli-
cated on multiple processors. Any of these processors could
perform the calculations for these duplicated objects in the
disjoint portion of the computation.

The freedom to assign work to any of several processors
raises the question of how best to exploit this flexibility.
In this paper we investigate using this freedom to improve
load balance. That is, we want to give most of this flexibly
assignable work to processors that would otherwise have too
little to do. More formally, we address the following task
assignment problem.

Given: A set of unit tasks and the (possibly singleton) set
of processors that can perform them.

Find: An assignment of tasks to processors that minimizes
the number of tasks assigned to the maximally
loaded processor.

Despite its practical utility, to our knowledge, this prob-
lem has not been defined or addressed previously. After
providing some basic definitions in §2, we investigate sev-
eral combinatorial approaches to address the task assign-
ment problem in §3. Some preliminary experimental results
are included in an appendix, which provide evidence that
significant gains in load balance can be achieved.

Besides formulating a new and practically important prob-
lem, this paper makes several technical contributions. First,
we describe a parametric search solution that uses a stan-
dard maximum-flow solver as a probe function. This solu-
tion is simple to implement and allows for the use of any
flow solver as a black box.

Our second combinatorial algorithm involves a more de-
tailed analysis of the structure of the problem. Specifically,
we devise a maximum-flow/minimum-cut theorem for our
non-standard objective function. This result gives signifi-
cant insight into the structure of the problem, and we use
it to devise an augmenting path algorithm that mimics the
structure of Ford-Fulkerson methods for maximum flows. It
is also worth noting that our approach solves the problem of
finding a maximum flow with the property that the largest
flow on any terminal edge is minimized.

These combinatorial algorithms are sufficient for many
problems in which a serial computation can determine the
assignment as a preprocessing step to a parallel calcula-
tion. However, in some instances the characteristics of the
parallel computation change over time, and the assignment
must be recomputed. Our combinatorial methods are not
particularly amenable to parallelization. For this reason,
in §4 we present a continuous approximation to the prob-
lem that leads to a more easily parallelized numerical ap-
proach. The continuous approximation is closely related to
the diffusion methodology widely employed for determin-
ing work transfers in dynamic load balancing [4]. We show
that the flexibly assignable work problem can be formu-

lated as a linearly-constrained optimization problem, i.e.,
min‖Ax‖∞, s.t. Bx = d. Here, the linear constraints Bx =
d guarantee that assignment of tasks is valid, and Ax is the
vector of processor loads. Minimizing the ∞-norm of this
vector corresponds to minimizing the maximum processor
load. Being a nonsmooth function, the ∞-norm is difficult
to minimize. However, we show that in this context, min-
imizing the 2-norm is sufficient to minimize the ∞-norm,
which reduces the problem to the well-studied numerical ker-
nel known as a linearly-constrained least squares problem.
We then show that there are efficient parallel approaches to
solve this problem. Of course, the discretized solution to
the continuous approximation may not be identical to the
actual solution to the discrete problem.

2. PRELIMINARIES
A flow network is defined by a directed graph G = (V, E),

with a source vertex s, a terminal vertex t, and a capacity
for each edge (i, j), which we denote by c(i, j).

We will define a flow f to be a function f : E → Z+

from edges to integers, and use f(i, j) to denote the volume
of flow along edge (i, j). A flow must satisfy the capacity
constraints on edges (i.e. f(i, j) ≤ c(i, j)), and the flow con-
servation constraints

(i,k)∈E

f(i, k) =
(j,i)∈E

f(j, i) for all i ∈ V \ {s, t}.

The value of a flow |f | is defined by the flow leaving the
source s,

|f | =
(s,v)∈E

f(s, v).

A maximum flow (max-flow) is a flow that maximizes |f |.
A flow is complete if its value is equal to the cumulative

capacity of edges leaving the source, i.e., |f | =
(s,v)∈E

c(s, v).

A graph that can support a complete flow will be called a
complete-flow graph.

Given a graph G and flow f , the residual graph Gf has
the same set of vertices as G and all edges in G (referred
to here as forward edges), plus a matching set of backward
edges that point in the opposite direction. The capacity of
a forward edge is equal to its capacity in G minus the flow
assigned to that edge in f . The capacity of a backward edge
is equal to the flow on the corresponding forward edge.

In the max-flow problem, an augmenting path is defined
as a path from s to t along which more flow can be pushed.
The capacity of a path is defined by the minimum of the
capacities of its edges. Any path in Gf from s to t with
nonzero capacity is an augmenting path and can be used to
increase the total flow.

Finding a maximum flow is a fundamental problem in
combinatorial algorithms and has been the subject of nu-
merous research efforts. Fundamentals of network flow al-
gorithms can be found in [2, 16]. In a more recent work,
Goldberg and Rao give a history of maximum-flow bounds
and relevant references [8].

The assignment of tasks to processors can be modeled as
a flow on a network G = (T, P, E), where each task is rep-
resented by a vertex in T , and each processor is represented
by a vertex in P . All processor-vertices are connected to the
terminal t by terminal edges, and the source s is connected to
all the task-vertices by source edges. Task-vertices have as-
signment edges connecting them to all the processors, which

70

78

10

20

80

12

74

ts

p

p

p

p

1

2

3

0v

v

v

v

v

v

v

0

1

2

3

4

5

6

Figure 1: Example of an assignment graph.

the associated task can be assigned to. The graph can be
simplified by combining all vertices that have identical sets
of processor neighbors. We call such sets task groups. An
example can be found in Figure 1.

The capacity of an edge from the source to a task-vertex is
defined by the size of the corresponding task group. We will
set the capacities for assignment edges and terminal edges
to be infinite. We will call this graph an assignment graph.
Notice that assignment graphs are complete-flow graphs.

Figure 1 illustrates an assignment graph. There are 7 task
groups and 4 processors. v1 corresponds to a task group of
10 tasks and can be assigned to processors p0, p1, and/or p2.
Notice that some of the task groups can be assigned to only
one processor. This situation often arises in practice, and
these tasks correspond to work that can be assigned only to
a single processor.

We can consider the assignment of tasks as a flow from the
task-vertices to processor-vertices. Our objective is to find a
flow that assigns all the tasks to processors while minimizing
the maximum load of any processor. We need the flow to be
complete (full capacity of source edges is used) to guarantee
assignment of all the tasks. We can define the flow problem
as follows.

Given an assignment graph G = (T, P, E), find a complete
flow f in G that minimizes

max
p∈P

f(p, t). (1)

Although we define our flow problem for very specific flow
graphs, the algorithms and analysis in the following sections
are valid for any complete-flow graph. For a general graph,
we would redefine P in (1) to be the set of vertices that
are connected to the terminal vertex (i.e., P = {v : (v, t) ∈
E}). Thus, the problem we are solving is equivalent to that
of finding a maximum flow that minimizes the largest flow
along any terminal edge.

In Figure 2, a solution to an assignment problem is illus-
trated. Numbers on the edges correspond to flow assign-
ments for these edges. This assignment gives an optimal
solution where p1 and p2 are the maximally loaded proces-
sors with 89 tasks. Out of 20 tasks of task group v3, 11 will
be performed on p1 and 9 will be performed on p2.

ts

p

p

p

p

1

2

3

0v

v

v

v

v

v

v

0

1

2

3

4

5

6

78

80

74

10

12

70

11

9

80

89

89

86

70
10

78

80

12

74

20

Figure 2: Example of a solution on an assignment
graph.

3. COMBINATORIAL SOLUTIONS
As outlined in §2, assignment of tasks to processors can

be formulated as a flow in a network. In this section, we will
investigate the relation between classical flow problems and
the task assignment problem. First, we will discuss paramet-
ric search solutions that use standard max-flow techniques
as a probe function, and describe a polynomial time algo-
rithm for the task assignment problem. Then we will show
how Ford-Fulkerson methods can be used to solve our prob-
lem. Specifically, we will revise the definition of augmenting
paths and cuts, and show that any maximum-flow algorithm
based on the Ford-Fulkerson method can be used for the task
assignment problem.

3.1 Parametric Search
A parametric search algorithm has two components: a

probe function that determines whether there is a solution
with a cost less than a specified value, and a method to
search on the space of candidate optimal solution values. Be-
low, we first show how standard maximum-flow algorithms
can be used as a probe function for our problem. Our cost
function is the maximum work assigned to any single pro-
cessor. Then we discuss two techniques to search the space
of candidate values. The following lemma formalizes our
claim for maximum-flow algorithms being used as a probe
function.

Lemma 3.1. There is a solution to the task assignment
problem with cost ≤ B if and only if there exists a complete
flow on the modified graph where all terminal edges have
capacity B.

Proof. Construct the assignment graph as described in §2
and change the capacities of all terminal edges to B. We
claim that there is a solution to the task assignment prob-
lem with cost ≤ B if and only if the maximum flow uses the
capacity of all the source edges. Proof of this claim follows.
Sufficiency. Bounds on capacities of terminal edges guar-
antee that no processor is assigned more than B units of
work, and if a flow uses all the source edge capacity then all
work is assigned to processors. Moreover, the flow solution
provides the corresponding task assignments.

Necessity. Assume there is a solution to the task assignment
problem where no processor is assigned more than B units
of work. We can use the assignments of tasks in this solution
to find a corresponding flow solution.

To solve the task assignment problem we must find the
minimal value of B for which a max-flow solution uses all
the source edge capacities. We present two algorithms for
finding this value in the following two subsections. The
complexity of the first one is pseudo-polynomial, whereas
the second one is polynomial. The relative performance of
these algorithms depends on problem specific details. Bisec-
tion search is generally more effective when searching over a
large space, whereas incremental search is more effective in
a more localized search space.

3.1.1 Bisection Search
Bisection search is a standard technique used in paramet-

ric search algorithms. It starts with a lower and an upper
bound on the optimal solution value, and discards half of the
interval by probing on the midpoint of the current bounds.
This gives an ε-approximation algorithm for real-valued so-
lutions, but finds an exact solution when the optimal solu-
tion value is an integer, as in the case of our problem.

For the task assignment problem, the total number of
tasks is an upper bound on the cost of an assignment, and
the number of tasks divided by |P | is a lower bound. Thus,
a bisection search gives the following result.

Theorem 3.2. If WT is the total number of tasks, bi-
section search solves the task assignment problem optimally
with O(log WT) probe calls.

3.1.2 Incremental Search
An incremental search starts with a lower bound for the

optimal solution value and increases it until the optimal
value is found. The increments should be small to avoid
missing the optimal value, but large for efficiency. The fol-
lowing lemma and theorem show how the lower bound can
be increased after a failed probe call — that is, a max-flow
problem with terminal edge capacities B in which not all
the source edge capacity is utilized.

Lemma 3.3. Let (u, t) be a terminal edge that is not sat-
urated in a maximum-flow solution f for a probe value B
(i.e., f(u, t) < c(u, t) = B). Then for any probe value
B′ > B, there is a maximum-flow solution f ′ in which
f ′(u, t) ≤ f(u, t).

Proof. When the Ford-Fulkerson method is used to achieve
an optimal solution f ′ for bound B′ > B by using f as
an initial solution, we can get an optimal solution with
f ′(u, t) ≤ f(u, t). First, note that u is not reachable from
s in Gf , and increasing terminal edge capacities does not
make u reachable from s. Furthermore, u will not be reach-
able while the flow is being modified via augmenting paths.
Consider the first augmenting path that will add a vertex
to the set of vertices u is reachable from. Observe that such
a path should reach a vertex that can reach to u, which
contradicts u’s non-reachability from s.

Theorem 3.4. For a failed probe with terminal edge ca-
pacity B, let Wr > 0 be the total unused source edge capacity,
and let K be the number of saturated terminal edges. Then
there is no feasible solution to the task assignment problem
with cost less than B + Wr/K.

Proof. By the result of Lemma 3.3, additional flow can-
not go to any of the unsaturated terminal edges. In the best
case, additional flow will be equally distributed among the
set of saturated terminal edges.

As a result of Theorem 3.4, a failed probe value B can be
increased to B + Wr

K , as exploited in Algorithm IncSearch.

Algorithm IncSearch
B ← WT /|P |;
while not Probe(B)

Let K be the number of saturated terminal edges,
and Wr be the total unused source edge capacity.
B ← B + Wr

K ;
return B;

The following lemma proves that Algorithm IncSearch ter-
minates and gives a bound on the number of probes it makes.

Lemma 3.5. Algorithm IncSearch terminates after at most
|P | probes.

Proof. When a probe value is increased, if all previously
saturated edges remain saturated then the probe call will
succeed. Thus, when a probe fails, at least one new terminal
edge is not saturated. That is, each failed probe decreases
the number of saturated terminal edges by at least one.

Theorem 3.6. Algorithm IncSearch finds an optimal so-
lution and makes O(|P |) probes.

Proof. We start with a lower bound. According to The-
orem 3.4, increases on B are minimal. Thus we do not miss
the optimal value. Lemma 3.5 ensures that the algorithm
terminates after O(|P |) probes with an optimal solution.

Notice that successive probes solve max-flow problems on
the same graph in an incremental manner, where only the
capacities of the terminal edges increase. Thus the previous
flow solution gives a feasible solution (though not optimal)
for the next flow solution, which might be exploited for ef-
ficiency. Using Ford-Fulkerson method in its simplest way
will give a complexity of O(WT ∗ |E|) for all the probes, and
thus for the algorithm.

3.2 Ford-Fulkerson Method
The Ford-Fulkerson method has been the basis of a num-

ber of algorithms to solve the max-flow problem. It is built
on three basic concepts: residual graphs, augmenting paths,
and cuts [2]. In this section, we will discuss how it can be
adopted to the task assignment problem. First, we will re-
vise the definitions of augmenting paths and cuts for the
task assignment problem, then state and prove a version of
the maximum-flow/minimum-cut theorem for the task as-
signment problem. The result will enable any algorithm

based on the Ford-Fulkerson method to be used to solve our
problem.

The generic Ford-Fulkerson method starts with a zero flow
and continues to add to the flow along augmenting paths
until no augmenting paths are left. In the task assignment
problem, we will use augmenting paths to shift flow (tasks)
from a maximally loaded terminal edge (processor) to a
less loaded terminal edge. Formally, an augmenting path
(pt, u, v) is a path pt in Gf that starts with the vertex u of a
maximally loaded terminal edge (u, t), ends at the vertex v
of a less-loaded terminal edge (v, t), and does not go through
t. We define the capacity c(pt,u, v) of an augmenting path
to be the minimum of the capacities of its edges and half of
the difference between the flow on the first and last terminal
edges, rounded down to an integer,

c(pt, u, v) = min((f(u, t) − f(v, t)
2

*, min{cf (i, j) : (i, j) on pt}).

This implies that the capacity of a path between two pro-
cessors whose loads differ by just one is zero, since such an
augmentation will not yield a more balanced distribution.

We can update flow assignment in the graph for edges on
the path and the two terminal edges connecting processor-
vertices to the terminal to obtain a more balanced distribu-
tion, as stated by the following lemma.

Lemma 3.7. Let f be the current flow, pt be an augment-
ing path, and c > 0 be the capacity of this path. Define
f+(i, j) for all edges as

f+(i, j) =

f(u, t) − c if i = u, j = t
f(v, t) + c if i = v, j = t
f(i, j) + c if (i, j) is on pt
f(i, j) − c if (j, i) is on pt
f(i, j) otherwise

.

Then f+ does not change the total flow (i.e., |f+| = |f |), but
decreases either the maximum load or the number of maxi-
mally loaded terminal edges.

Proof. For the total flow to change we must decrease
flow from s. This is possible only if there is an edge (v, s)
in pt, but this edge must be followed by another edge (s, u),
and thus total flow from s does not change. With the same
argument, flow conservation constraints are satisfied for all
vertices. Since pt does not go through t, augmentation will
affect only two terminal edges: (u, t) and (v, t). By definition
of an augmenting path, (u, t) is a maximally loaded terminal
edge, and we decrease its load. By definition of the capacity
of an augmenting path, the load of (v, t) cannot be as high
as (u, t), after we increase it.

In traditional flow problems, a cut (S, T) in G is defined
as a partition of vertices into S and T in which s ∈ S and
t ∈ T . The cost of a cut is defined as the sum of capacities
of edges from S to T . The cost of a minimum cut and value
of a maximum flow are equal. A minimum cut corresponds
to a bottleneck in the flow from source to terminal. For the
task assignment problem, we will define a cut as a biparti-
tioning (P1, P2) of the processor-vertices. The cost of a cut
is defined to be the maximum load in P1 when
(i) processors in P1 are equally loaded,

(ii) all the tasks that can be assigned to a processor in P2

are assigned to processors in P2.
By “equally loaded” we mean that the loads of any two pro-
cessors differ by at most one. Cuts will help to identify a
bottleneck in the problem, just as in maximum flow prob-
lems. A bottleneck in our problem is a group of processors
that have to perform a large set of tasks. Unlike the maxi-
mum flow problem, cuts provide lower bounds on the cost.

With the above definitions, we have the following maximum-
flow/minimum-cut theorem for the task assignment prob-
lem.

Theorem 3.8. The following statements are equivalent:

1. Flow f minimizes the load of the maximally loaded pro-
cessor.

2. There is no augmenting path that decreases the maxi-
mum load in Gf .

3. The maximum load is equal to the cost of a cut (P1, P2).

Proof. • (1) =⇒ (2) Assume the contrary, that there
exists an augmenting path to decrease the maximum
load. Then we can use this path to decrease the max-
imum load, so f is not an optimal flow.

• (2) =⇒ (3) Let P1 be the set of processors with maxi-
mum load plus processors reachable from a maximally
loaded processor in Gf . The set P2 contains the re-
maining processors. By construction, there are no aug-
menting paths from P1 to P2. This guarantees that all
tasks between P1 and P2 are assigned to P2 processors.
Also, since there are no augmenting paths in Gf , the
loads of all processors in P1 are either equal to or one
less than the maximum load. That is, the processors
in P1 are equally loaded.

• (3) =⇒ (1) Since all tasks which could be assigned to
either P1 or P2 are assigned to processors in P2, the
work currently assigned to processors in P1 must be
performed by processors in P1. The best we can do
is to assign all work equally, which is guaranteed by
the first condition in the definition of a cut, so f is an
optimal solution.

Corollary 3.9. Any algorithm based on the Ford-Fulkerson
method can be used to solve the task assignment problem.

It is worth noting that although any algorithm based on
the Ford-Fulkerson method might be used to solve this prob-
lem optimally, the complexity results might vary from those
of the conventional max-flow problem.

Below, we present an algorithm AugPath, which finds an
optimal solution using augmenting paths.

Algorithm AugPath
find a complete flow f in G;
while there is an augmenting path pt

augment flow along pt;

Theorem 3.10. Algorithm AugPath finds an optimal so-
lution in O(|E| ∗ log |P | ∗ WT)-time.

Proof. Correctness of the algorithm is implied by Corol-
lary 3.9. Finding an augmenting path takes O(E)-time in
the worst case. By Lemma 3.7, each augmenting path ei-
ther decreases the maximal load or the number of maximally
loaded processors. This gives a loose |P | ∗WT bound on the
number of augmenting paths required. A better bound is
possible however. When the maximum load is in the range
[WT /2, WT], only one processor might have the maximum
value, and thus each augmenting path will decrease the max-
imum load by one. Generally, when the maximum is in the
range [WT /(k+1), WT /k] there can be at most k processors
with the maximum load and k augmenting paths may be
needed to decrease the maximum load. So the total number
of augmenting paths can computed as

1≤k≤|P |−1

WT

k
− WT

k + 1
k

= WT

1≤k≤|P |−1

k + 1 − k
k(k + 1)

k

= WT

1≤k≤|P |−1

1

k + 1

= O(WT ∗ log |P |).

4. NUMERICAL SOLUTION
The flow formulations described above provide efficient,

serial algorithms for optimizing task assignments. Unfortu-
nately, flow algorithms are difficult to parallelize, particu-
larly for large numbers of processors. In this section we de-
scribe a continuous version of the problem and show that it
reduces to a well-studied numerical computation. Although
this approach does not provide an integral solution, its par-
allelizability may make it preferable for many applications.
In spirit, our approach is similar to the widely used diffusion
methods to determine how much work to transfer between
processors in dynamic load balancing [4, 6, 7].

In our numerical formulation, each task group generates
an equation. Say the task group has m tasks in it. If the
task group can be assigned to any of k processors, then
there will be k unknowns associated with the task group.
Each of these unknowns x1, . . . , xk encodes the assignment
of the corresponding task group to one of the processors. In
a discrete formulation we would want the xi values to be
integral, but in our continuous formulation we impose the
following, weaker, set of equality and inequality constraints.

k

i=1

xi = m, and xi ≥ 0 for all 1 ≤ i ≤ k

The x values can be used to encode the work assigned to
each of the |P | processors. The task group with k potential
processors will generate k columns of length |P |. The ith
column is all 0’s except for a single 1 in the row number
that corresponds to the processor associated with xi. These

columns can be treated as a matrix, and multiplying the x
vector by this matrix gives a |P | length vector containing
the work assigned to each of the processors.

We can continue this construction, adding variables, con-
straints, and work contributions from all |T | tasks. Letting
|Q| denote the sum over all tasks of the number of proces-
sors that task could be assigned to, we obtain the following
problem.

min
x

‖Ax‖∞ subject to Bx = d and x ≥ 0, (2)

where A is |P |× |Q|, B is |T | × |Q|, and both have only a
single 1 in each column. In the flow terminology from §2, the
x vector is the assignment of a (possibly fractional) flow to
the edges from source-adjacent nodes to terminal-adjacent
nodes (see Figure 1). Ax is the amount of flow into each
terminal-adjacent node, Bx is the flow out of each source-
adjacent node and d is the vector of sizes of task groups. So
Bx = d merely encodes the flow preservation property for
each source-adjacent node in a complete flow. The ∞-norm
reflects our desire to minimize the work of the maximally
loaded processor. It is worth remarking that tasks that can
be performed only by a single processor can be removed from
the variable set, reducing the size of the problem. For the
example from Figure 1, we get the following matrices in our
numerical formulation.

A =

1 1
1 1 1 1

1 1 1 1
1 1

B =

1
1 1 1

1
1 1

1
1 1 1

1

d =

70
10
78
20
80
12
74

Unfortunately, the ∞-norm is not smooth and so can be
difficult to minimize. A similar problem arises in the dif-
fusion approach where a 1-norm is approximated by the
smooth alternative of a 2-norm. We will similarly choose
to replace our ∞-norm with a 2-norm as follows.

min
x

‖Ax‖2 subject to Bx = d and x ≥ 0 (3)

This formulation is an instance of what is known as a linearly-
constrained least squaresproblem. Unlike the diffusion method-
ology, in our case we lose nothing by transforming to a
smoother approximation since for our problem a solution to
the 2-norm problem also solves the ∞-norm problem. This
is shown by the following theorem.

Theorem 4.1. Any x that solves Problem (3) is also a
solution for Problem (2).

Proof. Begin by noting that Problem (2) is identical to
the flow problem from §3, except that variables are contin-
uous instead of discrete. The analysis from §3 generalizes
to continuous variables in a straightforward manner, so the
structure of a solution to Problem (2) is the same as the
structure of a solution to the flow formulation. Specifically,

a subset of processors (P1) will have the same maximum
load (lmax), and all tasks that can be assigned to processors
with smaller loads (P2) have been so assigned.

Now let x be a solution to Problem (3). This problem
has the same constraints as Problem (2), so it shares the
same space of feasible solutions. As with the solution to
Problem (2), the processors in P1 will need to be assigned
at least a total of |P1|lmax load. It is easy to show that the
contribution of these processors to the 2-norm is minimized
when all their loads are equal. Any transfer of work from
processors in P2 to processors in P1 will only increase the 2-
norm. So a solution to Problem (3) must also be a solution
to Problem (2).

Least squares problems are fundamental to linear alge-
bra (see, e.g.. [1]). Constrained least squares problems have
been studied by several authors. Of interest to us are it-
erative methods that are amenable to parallelization. Note
that since we are using the continuous formulation as an ap-
proximation to a discrete problem, a low accuracy numerical
solution is sufficient.

One way to deal with linear equality constraints is the
method of weighting [1]. This method moves the equality
constraints into the objective function, but severely penal-
izes slack in these rows by weighting these equations. So
Problem (3) is transformed to the form

min
x

γB
A

x − γd
0

2

subject to x ≥ 0,

where γ is a large number used to penalize slack in the equal-
ity constraints. This transforms our problem to an instance
of a nonnegative least squares problem,

min
x

‖Cx − b‖2 subject to x ≥ 0.

The nonnegative least squares problem is equivalent to the
following optimization problem.

min
x

1
2

xT Ex − cT x subject to x ≥ 0,

where E = CT C and c = CT b. Cryer proposed the fol-
lowing SOR iteration for solving nonnegative least squares
problems [3],

xk+1
i = max 0, xk

i − ω

eii
ci −

j<i

eijx
k+1
j −

j≥i

eijx
k
j .

This is a standard stencil operation and requires only lo-
cal communication with neighbor processors. Hence, it is
amenable to efficient parallelization.

The least squares technique will give a non-integral so-
lution, which needs to be discretized for task assignment.
The continuous solution can be easily mapped to a feasible
solution by adjusting the assignments for each task group.
Consider a group of tasks that can be assigned to either p0

or p1. We can round the total assignment to p0 up to an
integer, and assign that many tasks to p0 and assign the
remainder to p1. Notice that this adjustment has only local
effects and is easy to generalize for more processors. We
do not have any bounds on the impact of such rounding
operations on solution quality.

Table 1: Results on molecular dynamics problems.

Problem N F P Init. Imp.
membrane 7134 4052598 8 5.80 0.32

64 21.17 0.21
512 58.34 2.16

mixer.half.1 4818 17220 8 121.55 110.78
64 163.70 134.07

mixer.half.2 4818 17360 8 146.48 130.40
64 195.59 155.15

5. EXPERIMENTAL RESULTS
We have applied our techniques to problems from two ap-

plication domains: molecular dynamics and overlapped do-
main decomposition. In each case, as described in §4 we
solved the least squares formulation of the problem in se-
rial, and used Gauss-Seidel iterations [5] to generate a new
distribution of work among processors. We define load im-
balance as (max−avg)∗100/avg, where max and avg denote
the maximum and average processor load, respectively.

For the molecular dynamics application, we used data pro-
vided by Plimpton which came from his spatial decomposi-
tion code [13]. In a molecular dynamics simulation, the work
is dominated by the number of forces that need to be com-
puted between pairs of nearby atoms. In this code, a bound-
ing box encloses all the atoms, the box is divided into P re-
gions of equal volume and each of P processors is responsible
for atoms residing within one of the boxes. Flexibility arises
when two atoms belonging to different processors are close
enough to interact. Larger interaction cutoffs and smaller
regions each increase the fraction of flexibly-assignable work.
If the atoms are uniformly distributed through the bound-
ing box (e.g. for simulations with periodic boundaries), then
the load will generally be well balanced. But for problems in
which the atom distributions are inhomogeneous, significant
load imbalance can arise.

We present results for two types of problems in Table 1. In
this table N represents the number of particles and F is the
total number of pairwise force computations. A simple way
to partition a set of flexibly assignable force computations
is to assign half to each of the two processors they span.
The load imbalance induced by this strategy is detailed in
column ‘Init.’ in the table. Column ‘Imp.’ contains the load
imbalance resulting from using our least squares algorithm
to assign work. Clearly, our approach can result in a signif-
icant reduction in load imbalance. It is worth noting that
these are problems of modest size, and so do not require
very large numbers of processors.

Of the problems in Table 1, the first comes from a biologi-
cal simulation of a membrane, in which the atomic densities
are higher within the membrane than within the surround-
ing fluid. For large numbers of processors we are able to
reduce the load imbalance from an initial 58% to just over
2%. The next two problems are instances of a simulation of a
rotating drum being used to mix solid particles as described
in [14]. The particles fill only a fraction of the volume of the
drum, leading to significant load imbalance. Specifically,
some of the processors are responsible for regions of space
that have few or no particles. For this problem, the parti-
cles are treated as rigid bodies, and so the cutoff distances
are very short. As a consequence, there are few flexibly

assignable interactions, which limits our ability to improve
load balance. Despite these inherent difficulties, we are still
able to significantly improve the overall load balance.

The second data set comes from an important class of
preconditioners known as overlapped Schwarz domain de-
composition [12, 15]. In this preconditioning scheme, pro-
cessors perform one phase of the calculation on subdomains
that overlap each other, and another phase on disjoint sub-
domains. To achieve high performance it is important to
balance the load of each phase. To accomplish this, we first
choose a partition for which the overlapped subdomains are
balanced [12]. Such a partition does not necessarily provide
load balance for the disjoint phase as evidenced by the “Ini-
tial” column in Table 2. To improve the load balance, we
can then exploit flexibility in task assignment for the disjoint
phase. Specifically, overlapped portions of the initial decom-
position correspond to duplicated data, and any processor
owning those data can perform the associated task in the
disjoint phase. Table 2 displays our experimental results
on a set of sparse test matrices arising from applications
where overlapped subdomain preconditioners are used [12].
In this table, N denotes the number of rows and columns,
and NNZ is the number of nonzeros in the matrix, and
P is the number of processors. These are all modest sized
problems and so do not require a very large number of pro-
cessors. The column labeled ‘Initial’ describes the load im-
balance associated with assigning the disjoint subdomains
to processors and then generating the overlapped partitions
by enlarging the disjoint domains by one layer. The column
labeled ‘Improved’ details the load imbalance resulting from
our least squares solution. The results indicate that sig-
nificant improvements in load balance are achieved by our
techniques.

It is worth noting that each Gauss-Seidel iteration consists
of a simple traversal of tasks, and the algorithm converges in
a few iterations. The load imbalance decreases sharply in the
first few iterations, and then levels off. In most instances,
the algorithm terminated after 3 or 4 iterations.

6. CONCLUDING REMARKS
We have posed and addressed the problem of distribut-

ing flexibly assignable work to processors to minimize load
imbalance. This paper considers the problem in a general
form, whereas exploiting problem-specific information might
yield more efficient solutions. For instance, in the molecular
dynamics application and in many other cases each task can
be assigned to one of at most two processors. We can ex-
ploit this fact to formulate the problem as a bounded least
squares problem, min ||Ax + b||2 s.t. 0 ≤ x ≤ u, where u is
a vector of upper bounds on decision variables. This formu-
lation grants simpler and more efficient solution techniques
than the more general linearly-constrained least squares for-
mulation.

Although we restrict our discussions in this abstract to
homogeneous parallel computers, our techniques can also be
generalized to address heterogeneous systems as well. De-
tails can be found in [11].

This paper introduced a novel way to improve load bal-
ance, and suggests several research directions. First, the
structure of this problem may allow specialization of flow
techniques. It will be interesting to investigate if and how
the advanced techniques for max-flow problems can be suited
to our problem for more efficient combinatorial algorithms.

Table 2: Results for the overlapped subdomain pre-
conditioners

Matrix N NNZ P Initial Improved
Braze 1344 142296 4 1.25 0.00

8 31.52 0.34
16 77.25 1.36
32 126.47 43.16

Defroll 6001 173718 4 13.28 0.08
8 25.47 7.28

16 17.89 5.86
32 41.66 15.94

DIE3D 9873 1723498 4 20.60 0.13
8 28.52 0.19

16 91.39 2.50
32 138.07 9.08

dday 21180 1033324 4 1.52 0.14
8 3.59 0.07

16 13.08 0.55
32 18.26 0.75

visco 23439 1136966 4 16.28 0.30
8 34.19 1.77

16 53.11 3.41
32 84.49 5.52

sls 36771 2702280 4 2.28 0.15
8 14.36 0.01

16 16.88 0.07
32 29.74 0.80

ocean 143437 819186 4 4.92 0.21
8 9.22 1.43

16 17.39 3.35
32 41.61 6.15

Second, it would be helpful to generalize these techniques
for non-unit tasks. Although the general problem corre-
sponds to number partitioning, one can look at special cases
like Cartesian partitions as in the case of molecular dynam-
ics applications. Finally, using these techniques in different
applications will be interesting. We keep identifying new
sources of flexibly-assignable tasks, where our techniques
can be used to improve load balance.

7. REFERENCES
[1] Björck, Å. Numerical Methods for Least Squares

Problems. SIAM, 1996.
[2] Cormen, T. H., Leiserson, C. E., and Rivest,

R. L. Introduction to Algorithms. MIT Press and
McGraw-Hill, Cambridge, MA, 1990.

[3] Cryer, C. The solution of a quadratic programming
problem using systematic overrelaxation. SIAM J.
Control and Optimization 9 (1971), 385–392.

[4] Cybenko, G. Dynamic load balancing for distributed
memory multiprocessors. J. Parallel Distrib. Comput.
7 (1989), 279–301.

[5] Dax, A. Bounded least squares problem. ACM Trans.
Math. Software (1991).

[6] Diekmann, R., Frommer, A., and Monien, B.
Efficient schemes for nearest neighbor load balancing.
Parallel Comput. (1999), 789–812.

[7] Elsässer, R., Monien, B., and Preis, R. Diffusive
load balancing schemes on heterogeneous networks. In

Proc. 12th ACM Symp. Parallel Alg. Arch. (SPAA)
(2000), pp. 30–38.

[8] Goldberg, A. V., and Rao, S. Beyond the flow
decomposition barrier. J. ACM 45 (1998), 783–797.

[9] Kalé, L., Bhandarkar, M., and Brunner, R.
Load balancing in parallel molecular dynamics. In
Fifth Intl. Symp. Solving Irregularly Structured
Problems in Parallel (1998), vol. 1457 of Lecture Notes
in Computer Science, Springer–Verlag, pp. 251–262.

[10] Kalé, L., Skeel, R., Bhandarkar, M., Brunner,
R., Gursoy, A., Krawetz, N., Phillips, J.,
Shinozaki, A., Varadarajan, K., and Schulten,
K. NAMD2: Greater scalability for parallel molecular
dynamics. J. Comp. Phys. 15 (1999), 283–312.

[11] Pınar, A. Combinatorial Algorithms in Scientific
Computing. PhD thesis, Dept. of Computer Science,
UIUC, 2001.

[12] Pinar, A., and Hendrickson, B. Partitioning for
complex objectives. In Proc. Intl. Parallel & Distrib.
Processing Symp. (2001).

[13] Plimpton, S. Fast parallel algorithms for short-range
molecular dynamics. J. Comp. Phys. 117 (1995), 1–19.

[14] Silbert, L., Ertas, D., Grest, G., Halsey, T.,
Levine, D., and Plimpton, S. J. Granular flow
down an inclined plane: Bagnold scaling and rheology.
Phys. Rev. E 64 (2001), 51302.

[15] Smith, B., Bjørstad, P., and Gropp, W. Domain
Decomposition: Parallel Multilevel Methods for
Elliptic Partial Differential Equations. Cambridge
University Press, Cambridge, UK, 1996.

[16] Tarjan, R. E. Data Structures and Network
Algorithms. SIAM, 1983.

